News

Archive

RSS Feed

Publications

  • F. Brink, F. Izsák, and J. J. W. van der Vegt. "Hamiltonian Finite Element Discretization for Nonlinear Free Surface Water Waves." Journal of Scientific Computing (2017): 1-29
  • S. Nurijanyan, J.J.W. van der Vegt, O.Bokhove. 2013: Hamiltonian DGFEM for rotating linear incompressible Euler equations: inertial waves. In press J. Comp. Phys.
  • W.E.H. Sollie, J.J.W. van der Vegt and O. Bokhove,Space-time discontinous Galerkin Finite Element Method for two-fluid flows.J. Comp. Phys., Vol. 230, pp. 789-817, 2011
  • S. Rhebergen, O. Bokhove and J.J.W. van der Vegt,Discontinuous Galerkin finite element method for shallow two-phase flows,Comp. Meth. Appl. Mech. Eng., Vol. 195, Issues 5-8, pp. 819-830, 2009, doi:10.1016/j.cma.2008.10.019.
  • L. Pesch and J.J.W. van der Vegt,A discontinuous Galerkin finite element discretization of the Euler equations for compressible and incompressible fluids,J. Comp. Phys., Vol. 227, No. 11, pp. 5426-5446, 2008, doi:10.1016/j.jcp.2008.01.046.
  • D. Sarmany, M.A. Botchev and J.J.W. van der Vegt,Dispersion and Dissipation Error in High-Order Runge-Kutta Discontinuous Galerkin Discretisations of the Maxwell Equations,J. Sci. Comp., Vol. 33, no. 1, pp. 47-74, 2007, doi:10.1007/s10915-007-9143-y.
  • L. Pesch, A. Bell, W.E.H. Sollie, V.R. Ambati, O. Bokhove, J.J.W. van der Vegt,hpGEM – A software framework for discontinuous Galerkin finite-element methods,ACM Trans. Math. Soft., Vol. 33, Number 4, 2007, doi.acm.org/10.1145/1268776.1268778.
  • S. Rhebergen, B. Cockburn and J.J.W. van der Vegt, A space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations, J. Comput. Phys., Vol. 233 (2013), pp 339-358
  • S. Rhebergen and B. Cockburn, A space-time hybridizable discontinuous Galerkin method for incompressible flows on deforming domains, J. Comput. Phys., Vol. 231/11 (2012), pp 4185-4204
  • S. Rhebergen and B. Cockburn, Space-time hybridizable discontinuous Galerkin method for the advection-diffusion equation on moving and deforming meshes, In C.A. de Moura and C.S. Kubrusly (editors), Proc. "The Courant-Friedrichs-Lewy (CFL) condition, 80 years after its discovery", Birkhauser Science, 2013, pp 45-63